
TwainScanning
About
TwainScanning is a .NET library that enables you to acquire images from any device that has TWAIN

drivers and convert acquired images to various formats including bitmap, jpeg, tiff and pdf.

Installation
Download file from the following link http://twainscanning.net/free-download and extract files from

the archive.

Setting up the project
 Add reference TwainScanning.dll into your project.

 Set “Solution Platform” to “x86”.

Providing the license key
For evaluation purposes, one can skip this step. If it is skipped all functionality will remain but

acquired images will have watermark written on them.

When you buy the license, you will receive serial key valid only for your company. To provide the

license key to the library call the GlobalConfig.SetLicenseKey function.

Using the library
Initializing data source manager (TWAIN)
Instantiate an instance of the DataSourceManager providing them your project’s main form and

additional info about your application.

By instantiating DataSourceManager TWAIN interface (source manager) is opened and initialized, the

drivers are loaded and ready to use.

If the TWAIN is not supported by the operating system or source manager cannot be opened,

instantiation will throw exception and object will not be created.

By disposing of this object TWAIN interface will close, and resources will be freed, so don't forget to

dispose it.

var dsm = new DataSourceManager(this); // opens TWAIN inside form

2

Choosing the data source (scanner)
There are two ways to select scanner: from code or by displaying TWAIN built in GUI to choose the

source.

From code

List of all available scanners, as a list of the TwIdentity objects, can be obtained through the

DataSourceManager.AvailableSources() method. Use one of the objects from the list to open

specific data source (scanner).

By built-in GUI

Call the DataSourceManager.SelectDefaultSourceDlg() method to show dialog on which one can

select default data source (scanner).

Opening the data source (scanner)
Data source (scanner) is opened by calling DataSourceManager.Open(). If as an argument is passed

device name or an instance of the TwIdentity object, specific data source will be opened. Otherwise

the default data source will be opened.

This function returns the DataSource object which represents opened, initialized and useful data

source (scanner). If it fails to open (for example if a scanner is turned off or it is already opened), the

function will throw.

By disposing DataSource object the data source (scanner) will be closed and resources freed. If one

forgets to dispose this object's data source, it may remain in opened state. That may prevent

opening this scanner again.

//listing and writing scanner names
List<TwIdentity> scannerIds = dsm.AvailableSources();
foreach (TwIdentity id in scannerIds)

Console.WriteLine(id.ProductName);

dsm.SelectDefaultSourceDlg();//Setting the default scanner by default twain

var ds = dsm.OpenSource(); // opens default source

var ds = dsm.OpenSource("ScannerXYZ"); // opens default source ScannerXZY

3

Basic settings
The DataSource object exposes some of the most commonly used setting for easy access through

these fields: PageSize, ColorMode, PixelDepth, Resolution, UseFeeder, UseDuplex and

TransferMechanism.

Setting and getting values on these fields is accomplished through the Value property.

Finding all available values on these fields is accomplished through the AvailableValues property.

All settings (capabilities)
All capabilities of the data source (scanner) can be accessed through the Settings object on the

DataSource. Capabilities are arranged into the categories. For a full list of categories and containing

capabilities see (Appendix: List of capabilities).

The value of specific capability can be obtained through the Value property on the capability object.

If a capability is read-only Value setter is not implemented. If a capability can have multiple values,

the Value property is an array.

All supported values can be retrieved through SupportedValues property.

IsSupportedOnThisDevice() method returns if this opened data source supports this capability.

ds.Resolution.Value = 200f; //setting resolution
ds.TransferMechanism.Value = TwSX.Memory; //setting transfer mechanism
float resolution = ds.Resolution.Value; //getting resolution
TwSX mech = ds.TransferMechanism.Value; //getting transfer mechanism

float[] resolutions = ds.Resolution.AvailableValues; //supported resolutions
TwSX[] mechs = ds.TransferMechanism.AvailableValues; //supported mechanism

var capOrientation = ds.Settings.ImageAcquire.Orientation; // info about orientation
if (capOrientation.IsSupportedOnThisDevice()) // can scanner support orientation?
{
 TwOR orientation = capOrientation.Value;
 Console.Write(" Current orientation is " + orientation);

 Console.Write(" All possible orientations are:");
 foreach(TwOR orient in capOrientation.SupportedValues)
 Console.Write(" " + orient);

 capOrientation.Value = TwOR.Landscape; //set orientation to Landscape
}

4

Acquiring
There are two ways of scanning available: synchronous and asynchronous.

Synchronous scanning

Synchronous scanning starts by calling DataSource.Acquire(…) method. This method doesn’t return

until scanning is finished.

It is the recommended way for scanning in the console applications.

Asynchronous scanning

Asynchronous scanning starts by calling DataSource.AcquireAsync(…) method. This method returns

immediately, and information about scanning status is provided using events only (see Events

chapter).

It is the recommended way for scanning in the non-console applications.

Collectors

Collectors can be used to collect scanned images (see chapter: Collectors). They are either provided

by the user to the acquire method, or the method will create the TwImgCollector and return it to the

user (depending on which overloaded function is called).

TwImgCollector coll1 = ds.Acquire(false);// scanning has started (no scanner gui)
coll1.SaveAllToBitmaps(...) ;//scanning has finished and collector is ready

TwImgCollectorPdf coll2 = new TwImgCollectorPdf(@"C:\someDir\someFile.pdf");

ds.Acquire(coll2, false);// scanning has started (no scanner gui)

coll2.Dispose(); // scanning has finished ()

private void Scan(){
 ds.AcquireAsync(onFinishedScanning, true););// scanning has started
}

private void onFinishedScanning(TwImgCollector collector){ // scanning has finished
 collector.SaveAllToMultipageTiff(@"C:\someFolder\someFile.tiff");
}

private void Scan(){
 var collector = new TwImgCollectorPdf(@"C:\someFolder\someFile.tiff");
 ds.OnScanningFinished += ds_OnScanningFinished;
 ds.AcquireAsync(collector, true); // scanning has started
}

private void OnScannFinished(object sender, DataSource.ScanningFinishedEventArgs e){
 e.Colletor.Dispose(); // scanning has finished
}

5

Transfer Mechanism

For the acquiring the user can specify one of the four transfer mechanisms:

- Native Transfer: the data source delivers a whole image at once in the form of the single

bitmap.

- Buffered Memory Transfer: the data source delivers an image in a series of chunks of a

bitmap. This mode will trigger the progress event.

- File Transfer: the data source doesn't deliver an image to the library but saves an image to a

file specified by the user. Collectors are not used in this scenario.

- Buffered Memory File Transfer: the data source delivers an image in a series of chunks of an

image file. This mode will trigger the progress event, and collectors are not used in this

scenario.

Other parameters

When acquiring user can specify some additional things:

- should scanner’s GUI be displayed

- if the GUI is displayed should it automatically close when scanning is finished

- number of images to scan in the current batch

Events
During the acquiring process several events can be monitored:

- OnSingleImageAcquired is triggered when one image is acquired. The user can access this

image in the form of System.Drawing.Bitmap.

- OnBatchFinished is triggered when all images from a single job are acquired. For example, all

documents from feeder are scanned, or a single document from the flatbed is scanned.

- OnScanningFinished is triggered when scanning ends. For example, the user closed

scanner’s GUI.

- OnMemoryTransferProgressUpdate is triggered when a chunk of the image is delivered to this

library. It is useful only for when the TwSX.Memory transfer is used.

- OnErrorEvent triggered when something went wrong during acquiring process. For example:

a paper jam, the device went offline.

Collectors
Collectors are objects which are used to collect acquired images. Collectors are typically instantiated

by the user and passed to the data source through some of the acquiring methods. While it is the

preferred way to deal with image one is not obligated to use collectors. Collectors can be used for

multiple scans; new images will be appended to the old ones.

 There are several types of collectors:

TwImgCollector

Most commonly used collector and most powerful. Can save collected images to various formats:

bitmap, jpeg, tiff, multipage tiff, pdf and multipage pdf. It uses the hard drive to temporary store

6

scanned images. This feature can be disabled and images will be stored in memory, but then there is

a risk of low memory exception.

TwImgCollectorPdf

Stores all acquired images to the single PDF. It doesn't use a hard drive to store temporary images,

and it can process the image while the next one is being scanned. The file will be saved on disposing.

TwImgCollectorTiff

Stores all acquired images to the single tiff. It doesn't use a hard drive to store temporary images,

and it can process the image while the next one is being scanned. The file will be saved on disposing.

TwImgCollectorPdfSinglepage

Stores all acquired images to the separate PDFs. It also doesn't use a hard drive to store temporarily.

TwImgMultiCollector

Used when the functionality of the several different collectors should be combined; for example:

when one must save images to pdf and tiff at the same time. Constructed with multiple collectors.

Appends scanned images to every collector that it owns.

One can also create its own collector by implementing IImgCollector interface.

IMPORTANT: All collectors must be disposed after use.

7

Appendix: List of capabilities
 AsyncDeviceEvents

o DeviceEvent

 AudibleAlarms

o Alarms

o Volume

 AutomaticAdjustments

o AutomaticSenseMedium

o AutoDiscardBlankPages

o AutomaticBorderDetection

o AutomaticColorEnabled

o AutomaticColorNonColorPixel

Type

o AutomaticCropUsesFrame

o AutomaticDeskew

o AutomaticLengthDetection

o AutomaticRotate

o AutoSize

o FlipRotation

o ImageMerge

o ImageMergeHeightThreshold

 AutomaticCapture

o NumberOfImages

o TimeBeforeFirstCapture

o TimeBetweenCaptures

 AutomaticScanning

o AutoScan

o CameraEnabled

o CameraOrder

o CameraSide

o ClearBuffers

o MaxBatchBuffers

 BarCodeDetection

o Enabled

o SupportedTypes

o MaxRetries

o MaxSearchPriorities

o SearchMode

o SearchPriorities

o Timeout

 Caps

o ExtendedCaps

o SupportedCaps

o SupportedDats

 Color

o ColorManagementEnabled

o Filter

o Gamma

o IccProfile

o PlanarChunky

 Compression

o BitOrderCodes

o CcittKFactor

o Method

o JpegPixelType

o JpegQuality

o JpegSubSampling

o PixelFlavorCodes

o TimeFill

 Device

o Online

o TimeDate

o SerialNumber

o MinimumHeight

o MinimumWidth

o ExposureTime

o FlashUsed2

o ImageFilter

o LampState

o LightPath

o LightSource

o NoiseFilter

o OverScan

o PhysicalHeight

o PhysicalWidth

o Unit

o ZoomFactor

 DoublefeedDetection

o Mode

o DoubleFeedDetectionLength

o DoubleFeedDetectionSensitivi

ty

o DoubleFeedDetectionRespons

e

 ImprinterEndorser

8

o Endorser

o Imprinter

o ImprinterEnabled

o ImprinterIndex

o ImprinterMode

o PrinterString

o PrinterSuffix

o PrinterVerticalOffset

o PrinterCharRotation

o PrinterFontStyle

o PrinterIndexLeadChar

o PrinterIndexMaxValue

o PrinterIndexNumDigits

o PrinterIndexStep

o PrinterIndexTrigger

o PrinterStringPreview

 ImageInformation

o Author

o Caption

o TimeDate

o ExtImageInfo

o SupportedExtImageInfo

 ImageAcquire

o ThumbnailsEnabled

o AutoBright

o Brightness

o Contrast

o Highlight

o ImageDataSet

o Mirror

o Orientation

o Rotation

o Shadow

o XScaling

o YScaling

 ImageType

o BitDepth

o BitDepthReduction

o BitOrder

o CustHalftone

o Halftones

o PixelFlawor

o PixelType

o Threshold

 Language

o TheLanguage

 MICR

o Enabled

 Page

o Segmented

o Frames

o MaxFrames

o Sizes

 Duplex

o Mode

o Enabled

 Feeder

o Autofeed

o ClearPage

o Alignment

o Enabled

o Loaded

o Order

o Pocket

o Prepare

o PaperDetectable

o PaperHandling

o ReacquireAllowed

o RewindPage

o Type

 PatchCodeDetection

o Enabled

o SupportedTypes

o MaxSearchPriorities

o SearchPriorities

o SearchMode

o MaxRetries

o Timeout

 PowerMonitoring

o BatteryMinutes

o BatteryPercentage

o PowerSaveTime

o PowerSupply

 Resolution

o X

o Y

o XNativeRes

o YNativeRes

9

 Transfer

o JobControl

o ImageCount

o Compression

o ImageFileFormat

o Tiles

o UndefinedImageSize

o Mechanism

 UserInterface

o CameraPreviewUI

o CustomDSData

o CustomInterfaceGuid

o EnableDSUIOnly

o Indicators

o IndicatorsMode

o UIControllable

Appendix: Examples
Minimal example

Minimal but useful example.

Scanning in Windows Form

// Minimal example using scanners UI
using (var dsm = new DataSourceManager(this)) // opens TWAIN
using (var ds = dsm.OpenSource(dsm.SelectDefaultSourceDlg())) // opens default source
using (var collector = ds.Acquire(true)) // acquires images
{
 collector.SaveAllToJpegs(@"C:\SomeFolder\Some\name.jpeg");// saves images to disk
} // closes ds and dsm

public partial class ScanningForm : Form
{
 DataSourceManager dsm = null;
 DataSource ds = null;
 public ScanningForm()
 {
 dsm = new DataSourceManager(this);
 InitializeComponent();
 }
 private void buttonScann_Click(object sender, EventArgs e)
 {
 dsm.SelectDefaultSourceDlg(); // sets default scanner
 ds = dsm.OpenSource(); // opens default scanner
 ds.AcquireAsync(onFinishedScanning, true, true, TwSX.Memory, -1);
 }
 private void onFinishedScanning(ImageCollector collector)
 {
 collector.SaveAllToMultipageTiff(@"C:\someFolder\someFile.tiff"); //saving
 collector.Dispose(); //disposing collector
 ds.Dispose(); //disposing scanner
 ds = null;
 }
 private void ScanningForm_FormClosing(object sender, FormClosingEventArgs e)
 {
 if (ds != null) ds.Dispose(); ds = null;
 if (dsm != null) dsm.Dispose(); dsm = null;
 }
}

